On the Tame Fundamental Groups of Curves over Algebraically Closed Fields of Characteristic > 0

نویسنده

  • AKIO TAMAGAWA
چکیده

We prove that the isomorphism class of the tame fundamental group of a smooth, connected curve over an algebraically closed eld k of characteristic p > 0 determines the genus g and the number n of punctures of the curve, unless (g, n) = (0, 0), (0, 1). Moreover, assuming g = 0, n > 1, and that k is the algebraic closure of the prime eld Fp, we prove that the isomorphism class of the tame fundamental group even completely determines the isomorphism class of the curve as a scheme (though not necessarily as a k-scheme). As a key tool to prove these results, we generalize Raynaud's theory of theta divisors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fundamental Group in Nonzero Characteristic

A proof of freeness of the commutator subgroup of the fundamental group of a smooth irreducible affine curve over a countable algebraically closed field of nonzero characteristic. A description of the abelianizations of the fundamental groups of affine curves over an algebraically closed field of nonzero characteristic is also given.

متن کامل

Alternating groups as monodromy groups in positive characteristic

Let X be a generic curve of genus g defined over an algebraically closed field k of characteristic p ≥ 0. We show that for n sufficiently large there exists a tame rational map f : X → P1k with monodromy group An. This generalizes a result of Magaard–Völklein to positive characteristic.

متن کامل

On projective plane curves whose complements have finite non-abelian fundamental groups

The topological fundamental group π1(P \C0) is isomorphic to the binary 3-dihedral group D̃3 := 〈 α, β | α = β = (αβ) 〉 of order 12 (cf. [11] [4; Chapter 4, §4]). In [1], Abhyankar studied the complement of the three cuspidal quartic over an algebraically closed field k of arbitrary characteristics. He showed that, if char k 6= 2, 3, then the tame fundamental group of the complement is isomorphi...

متن کامل

On the Specialization Homomorphism of Fundamental Groups of Curves in Positive Characteristic

Introduction Recall that for proper smooth and connected curves of genus g ≥ 2 over an algebraically closed eld of characteristic 0 the structure of the étale fundamental group π g is well known and depends only on the genus g. Namely it is the pro-nite completion of the topological fundamental group of a compact orientable topological surface of genus g. In contrast to this, the structure of t...

متن کامل

On the Structure of Tame Graded Basic Hopf Algebras Ii

In continuation of the article [28] we classify all radically graded basic Hopf algebras of tame type over an algebraically closed field of characteristic 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003